Current loads (I)

They represent loads for which the current is considered constant, i.e. the power is proportional to the voltage.

ZIP equation: \(S = 0 \times V^0 + i \times V^1 + 0 \times V^2 \implies S \propto V\)

Equations

The equations are the following (star loads):

\[\begin{split}\left\{ \begin{aligned} \underline{I_{\mathrm{abc}}} &= \mathrm{constant} \\ \underline{I_{\mathrm{n}}} &= -\sum_{p\in\{\mathrm{a},\mathrm{b},\mathrm{c}\}}\underline{I_{p}} \end{aligned} \right.\end{split}\]

And the following (delta loads):

\[\begin{split}\left\{ \begin{aligned} \underline{I_{\mathrm{ab}}} &= \mathrm{constant} \\ \underline{I_{\mathrm{bc}}} &= \mathrm{constant} \\ \underline{I_{\mathrm{ca}}} &= \mathrm{constant} \end{aligned} \right.\end{split}\]

Example

import functools as ft
import numpy as np
import roseau.load_flow as rlf

# Two buses
bus1 = rlf.Bus(id="bus1", phases="abcn")
bus2 = rlf.Bus(id="bus2", phases="abcn")

# A line
lp = rlf.LineParameters(id="lp", z_line=rlf.Q_(0.35 * np.eye(4), "ohm/km"))
line = rlf.Line(id="line", bus1=bus1, bus2=bus2, parameters=lp, length=rlf.Q_(1, "km"))

# A voltage source on the first bus
un = 400 / np.sqrt(3)
vs = rlf.VoltageSource(id="source", bus=bus1, voltages=rlf.Q_(un, "V"))

# The potential of the neutral of bus1 is fixed at 0V
pref = rlf.PotentialRef(id="pref", element=bus1)

# A balanced constant-current load on the second bus: 5A per phase
load = rlf.CurrentLoad(id="load", bus=bus2, currents=rlf.Q_(5, "A"))

# Create a network and solve a load flow
en = rlf.ElectricalNetwork.from_element(bus1)
en.solve_load_flow()

# Get the current of the load (equal to the one provided)
en.res_loads["current"].transform([np.abs, ft.partial(np.angle, deg=True)])
# |               |    absolute |   angle |
# |:--------------|------------:|--------:|
# | ('load', 'a') | 5           |       0 |
# | ('load', 'b') | 5           |    -120 |
# | ('load', 'c') | 5           |     120 |
# | ('load', 'n') | 1.77636e-15 |     180 |

# Get the voltages of the network
en.res_buses_voltages.transform([np.abs, ft.partial(np.angle, deg=True)])
# |                |   ('voltage', 'absolute') |   ('voltage', 'angle') |
# |:---------------|--------------------------:|-----------------------:|
# | ('bus1', 'an') |                    230.94 |                      0 |
# | ('bus1', 'bn') |                    230.94 |                   -120 |
# | ('bus1', 'cn') |                    230.94 |                    120 |
# | ('bus2', 'an') |                    229.19 |                      0 |
# | ('bus2', 'bn') |                    229.19 |                   -120 |
# | ('bus2', 'cn') |                    229.19 |                    120 |

# Create an unbalanced load with three different current values
load.currents = rlf.Q_(np.array([5.0, 2.5, 0]) * rlf.PositiveSequence, "A")

en.solve_load_flow()

# Get the currents of the loads of the network
en.res_loads["current"].transform([np.abs, ft.partial(np.angle, deg=True)])
# |               |   absolute |   angle |
# |:--------------|-----------:|--------:|
# | ('load', 'a') |    5       |       0 |
# | ('load', 'b') |    2.5     |    -120 |
# | ('load', 'c') |    0       |     180 |
# | ('load', 'n') |    4.33013 |     150 |