Impedance loads (Z)¶
They represent loads for which the impedance is considered constant, i.e. the power is proportional to the square of the voltage.
ZIP equation: \(S = 0 \times V^0 + 0 \times V^1 + z \times V^2 \implies S \propto V^2\)
Equations¶
The equations are the following (star loads):
\[\begin{split}\left\{
\begin{aligned}
\underline{I_{\mathrm{abc}}} &= \frac{\underline{V_{\mathrm{abc}}}-\underline{V_{\mathrm{n}}}}{
\underline{Z_{\mathrm{abc}}}} \\
\underline{I_{\mathrm{n}}} &= -\sum_{p\in\{\mathrm{a},\mathrm{b},\mathrm{c}\}}\underline{I_{p}}
\end{aligned}
\right.\end{split}\]
And the following (delta loads):
\[\begin{split}\left\{
\begin{aligned}
\underline{I_{\mathrm{ab}}} &= \frac{\underline{V_{\mathrm{a}}}-\underline{V_{\mathrm{b}}}}{\underline{Z_{\mathrm{ab}}}} \\
\underline{I_{\mathrm{bc}}} &= \frac{\underline{V_{\mathrm{b}}}-\underline{V_{\mathrm{c}}}}{\underline{Z_{\mathrm{bc}}}} \\
\underline{I_{\mathrm{ca}}} &= \frac{\underline{V_{\mathrm{c}}}-\underline{V_{\mathrm{a}}}}{\underline{Z_{\mathrm{ca}}}}
\end{aligned}
\right.\end{split}\]
Example¶
import functools as ft
import numpy as np
import roseau.load_flow as rlf
# Two buses
bus1 = rlf.Bus(id="bus1", phases="abcn")
bus2 = rlf.Bus(id="bus2", phases="abcn")
# A line
lp = rlf.LineParameters(id="lp", z_line=rlf.Q_(0.35 * np.eye(4), "ohm/km"))
line = rlf.Line(id="line", bus1=bus1, bus2=bus2, parameters=lp, length=rlf.Q_(1, "km"))
# A voltage source on the first bus
un = 400 / np.sqrt(3)
vs = rlf.VoltageSource(id="source", bus=bus1, voltages=rlf.Q_(un, "V"))
# The potential of the neutral of bus1 is fixed at 0V
pref = rlf.PotentialRef(id="pref", element=bus1)
# A balanced constant-impedance load on the second bus: R=40 ohm, X=3 ohm per phase
load = rlf.ImpedanceLoad(id="load", bus=bus2, impedances=rlf.Q_(40 + 3j, "ohm"))
# Create a network and solve a load flow
en = rlf.ElectricalNetwork.from_element(bus1)
en.solve_load_flow()
# Get the impedances of the load (the result is equal to the provided impedance
load.res_voltages / load.res_currents[:3]
# array([40.+3.j, 40.+3.j, 40.+3.j]) <Unit('volt / ampere')>
# Get the voltages of the network
en.res_buses_voltages.transform([np.abs, ft.partial(np.angle, deg=True)])
# | | ('voltage', 'absolute') | ('voltage', 'angle') |
# |:---------------|--------------------------:|-----------------------:|
# | ('bus1', 'an') | 230.94 | -6.40192e-19 |
# | ('bus1', 'bn') | 230.94 | -120 |
# | ('bus1', 'cn') | 230.94 | 120 |
# | ('bus2', 'an') | 228.948 | 0.0370675 |
# | ('bus2', 'bn') | 228.948 | -119.963 |
# | ('bus2', 'cn') | 228.948 | 120.037 |
# Create an unbalanced load with three different impedance values
load.impedances = rlf.Q_(np.array([40 + 4j, 20 + 2j, 10 + 1j]), "ohm")
en.solve_load_flow()
# Get the impedance of the load
load.res_voltages / load.res_currents[:3]
# array([40.+4.j, 20.+2.j, 10.+1.j]) <Unit('volt / ampere')>
# Get the voltages of the network
en.res_buses_voltages.transform([np.abs, ft.partial(np.angle, deg=True)])
# | | ('voltage', 'absolute') | ('voltage', 'angle') |
# |:---------------|--------------------------:|-----------------------:|
# | ('bus1', 'an') | 230.94 | 0 |
# | ('bus1', 'bn') | 230.94 | -120 |
# | ('bus1', 'cn') | 230.94 | 120 |
# | ('bus2', 'an') | 232.313 | -0.792296 |
# | ('bus2', 'bn') | 228.33 | -118.76 |
# | ('bus2', 'cn') | 218.703 | 119.891 |